Programme détaillé Big Data Engineering

Contenu de la formation

1. Enjeux et perspectives

Jour 1

Big Data : Introduction

  • Introduction
  • Types du big data
  • Du SQL au NoSQL
  • Caractéristiques techniques des 5V
  • Technologies Big Data
  • Languages Big Data
  • Acteurs principaux du Big Data
  • Différents métiers du Big Data
  • Collecte et traitement des données structurées, semi-structurées et non-structurées
  • Stockage des données
  • Diffusion des données
  • Traitements en temps réel ou différé: Kafka
  • Architectures réparties : Hadoop
  • Architecture Cloud / Scalabilité
  • Impact de l’usage du Big Data
  • Création de la valeur à partir des données
  • Exemple d’architecture Big Data

Enjeux du Big Data

  • Enjeux du big data en france
  • ROI et Big Data

Marché Du Big Data

  • Marché de la data au niveau mondial
  • Évolutions et les acteurs de la chaine de l’offre Big Data
  • Enjeux stratégiques (création de la valeur)
  • Opportunités pour les entreprises de services informatiques

Impacts du Big Data sur l’entreprise

  • Transformation de la relation client
  • Transformation de l’organisation de l’entreprise
  • Transformation du produit final
  • Chaîne des valeurs, développement des nouvelles activités
  • Productivité et optimisation des dépenses
  • Apparition des nouveaux rôles/métiers (data scientists et CDO)
  • Compétences nouvelles à acquérir

Solutions technologiques du Big Data

  • L’écosystème de la plateforme Hadoop : Pig, Flume, Zookeeper, HBase, Oozie, YARN,
    MapReduce…
  • Les modes de stockage (NoSQL, HDFS) / principes de fonctionnement de MapReduce

Méthodologie de gestion d’un projet Big Data

  • Mise en place d’un projet Big Data
  • Méthodologies recommandées pour lancer un projet Big Data
  • Calcul du retour sur investissement d’un projet Big Data

Atelier pratique

2. Architecture Big Data

Jour 1

Introduction à l’architecture Big Data

  • Définition du Big Data
  • Comprendre le volume
  • Besoin Big Data
  • Introduction à l’architecture Big Data
  • Distribution des données
  • Rôles d’un projet Big Data
  • Atelier pratique

Ecosystème Hadoop

  • Technologies et Outils Big Data
  • Découvrir l’écosystème Hadoop
  • Les distributions Hadoop
  • Atelier pratique

Mode de stockage HDFS et Base NoSql

  • Comprendre HDFS
  • HadoopFS
  • Caractéristiques de HDFS
  • Les modes de stockage HDFS
  • Services HDFS
  • Opération HDFS
  • Administration d’un cluster HDFS
  • Comprendre NoSQL
  • Les modes de stockage NoSQL
  • Choix du type de la Base de donnée NoSQL
  • Atelier pratique

Principes du Traitement MapReduce

  • Principes de fonctionnement de MapReduce
  • Fonction map()
  • Fonction reduce()
  • Conception d’un MapReduce
  • Atelier pratique

Architecture applicative

  • Introduction
  • Différentes étapes de gestion des données (Cycle de vie des données dans le Big Data)
  • Définition du processus d’ingestion des données
  • Outil disponibles sur le marché
  • Modèle d’architecture applicative d’une solution Big Data
  • Atelier pratique

Architecture technique

  • Introduction à l’architecture technique
  • Traitement de données
  • Qualité des données (Data Quality)
  • Architectures réparties (Clustering Hadoop)
  • Atelier pratique

Modèles d’Architectures Big Data

  • Introduction
  • Architecture Datalake
  • Architecture Lambda
  • Architecture Kappa
  • Architecture pour l’internet des objets (IoT)
  • Atelier pratique

Critères de choix d’une architecture Big Data

  • Introduction
  • Critères de choix
  • Le type de traitement
  • L’utilisateur final des données
  • La source des données (où les données sont générées)
  • Format du contenu
  • Types des données à traiter
  • Fréquence et taille des données
  • Méthodologie de traitement des données
  • Le choix du matériel
  • Récapitulatif des critères du choix d’une architecture big data
  • Atelier pratique

3. NoSQL

Jour 1

Introduction aux Bases de données NoSQL

  • Histoire de NoSQL
  • Comprendre le modèle NoSQL
  • NoSQL Vs BDR
  • Propriétés ACID
  • Propriétés BASE
  • Théorème de Brewer ou de CAP
  • Caractéristiques NoSQL

Atelier pratique

Principaux modèles de BD NoSQL

  • Familles des Bases de Données NoSQL
  • Modèle NoSQL « Clé-Valeur »
  • Modèle NoSQL orienté Colonne
  • Modèle NoSQL orienté Document
  • Modèle NoSQL orienté Graphe
  • Bases de données NoSQL
  • Comparatif des bases de données NoSQL
  • Récapitulatif des types de schéma de données NoSQL
  • HBase
  • MongoDB
  • Cassandra
  • Redis
  • Couchbase
  • Elasticsearch
  • Riak

Atelier pratique

Choix d’une Base de données NoSql

  • Choisir une base de données NoSQL
  • Classification des bases de données les plus utilisées

Atelier pratique

4. Apache Hadoop

Jour 1

Section 1: Introduction à l’écosystème Hadoop

  • Aborder cette formation
  • Découvrir NoSQL
  • Définir le Big Data
  • Comprendre l’histoire d’Hadoop
  • Parcourir l’écosystème Hadoop
  • Différencier les distributions Hadoop
  • Comprendre le NoSQL
  • Définition du Big Data
  • Architecture de Hadoop
  • L’Écosystème de Hadoop
  • Rôle des différents composants de l’écosystème Hadoop
  • Rôle des collecteurs de données
  • Distributions d’Hadoop

Section 2: Installation de l’environnement Hadoop

  • Installation de l’environnement Hadoop VM Ubuntu
  • Installation de l’environnement Hadoop sur Windows
  • Différencier les distributions Hadoop
  • Découvrir Cloudera Hadoop
  • Démarrer une QuickStart VM
  • Travaux pratique: Installation Hadoop

Section 3: HDFS – La couche de stockage

  • Comprendre le HDFS
  • Découvrir HadoopFS
  • Assimiler les principes du HDFS
  • Appréhender les services HDFS
  • Comprendre les opérations HDFS
  • Configuration de HDFS
  • Demarrage de HDFS
  • Administrer le cluster HDFS
  • Découvrir la gestion des services HDFS
  • 0Manipuler les fichiers en ligne de commande
  • Exécuter des opérations en Java
  • Utiliser les InputStream Java
  • Accéder à HDFS avec WebHDFS
  • Caractéristiques de HDFS
  • Architecture de HDFS
  • Rôle de HDFS
  • Opérations HDFS
  • Listing des fichiers dans HDFS
  • Insertion des données dans HDFS
  • Extraction des données du HDFS
  • Arrêt du HDFS

Jour 2

Section 4: Fonctionnement de MapReduce

  • Appréhender les principes de base
  • Découvrir la fonction map()
  • Utiliser la fonction reduce()
  • Concevoir un MapReduce
  • Développer le mapper
  • Développer le reducer
  • Créer un jeu de données
  • Créer le driver
  • Lancer un MapReduce en Java
  • Suivre l’évolution du MapReduce
  • Développer un MapReduce en PHP
  • Lancer des MapReduce avec Hadoop Streaming
  • Principes de base de MapReduce
  • Architecture MapReduce
  • Fonction map()
  • Fonction reduce()
  • Conception d’un MapReduce
  • Développer le mapper
  • Développer le reducer
  • Création d’un jeu de données
  • Création d’un driver
  • Lancer un MapReduce en Java
  • Suivi de l’évolution du MapReduce
  • Développement d’un MapReduce en PHP
  • Lancement des MapReduce avec Hadoop Streaming
  • TP : Fonctionnement de MapReduce

Section 5: Base de données NoSQL HBase

  • Identifier les cas d’utilisation de HBase
  • Comprendre le modèle Hbase
  • Administrer HBase
  • Appréhender les opérations HBase
  • Gérer les services avec des interfaces web
  • Lancer des commandes HBase dans le terminal
  • Filtrer les résultats d’un scan
  • Utiliser HBase en Java
  • Utiliser HBase dans les MapReduce
  • Définition de Hbase
  • Hbase avec Hadoop
  • Cas d’utilisation de HBase
  • Comprendre le modèle Hbase
  • Installation de Hbase
  • Architecture
  • Composants Hbase (Region, Region Server, Region Split)
  • Lecture et écriture dans Hbase
  • API Shell
  • API Java
  • TP : Base de données NoSQL HBase

Jour 3

Section 6: Apache Oozie -Ordonnanceur de WorkFlow

  • Définition de Oozie
  • Caractéristiques Oozie
  • Fonctionnement de Oozie
  • Actions Oozie
  • Oozie Job
  • Oozie workflow
  • Coordinateur Oozie
  • Paramètre Oozie
  • Monitoring Oozie
  • Packaging et déploiement d’une application de workflow Oozie

Section 7: Collecte de données avec Apache Sqoop

  • Introduire scoop anglais
  • Importer les données avec scoop
  • Définition de Sqoop
  • Cible des imports dans le cluster
  • Architecture de Sqoop
  • Fonctionnement de Sqoop
  • Exemple d’import vers HDFS
  • Exemples d’import vers Hive
  • Exemple d‘exports

Section 8 : travaux pratiques: Développement d’une application Big Data avec Hadoop

  • Mission 1: Conception de l’application
  • Découper l’application
  • Exploiter les données
  • Concevoir la base de données HBase
  • Parser le fichier d’entrée dans un mapper
  • Écrire dans HBase avec un reducer
  • Mettre en place des clés composites
  • Utiliser les clés composites
  • Lancer un modèle MapReduce d’import

Jour 4

Mission 2: Développement des modèles MapReduce

  • Lire les données de HBase dans un mapper
  • Agréger les données dans un reducer
  • Suivre les modèles MapReduce
  • Déboguer les modèles MapReduce
  • Explorer les sources d’Hadoop
  • Réaliser des jointures de données
  • Résoudre le problème du secondary sort
  • Optimiser ses modèles MapReduce

Mission 3: Développement des modèles MapReduce

  • Mettre en place un workflow Oozie
  • Lancer un workflow Oozie
  • Filtrer les données de HBase
  • Exporter dans MySQL grâce à Sqoop
  • Lancer son workflow avec l’API HTTP REST
  • Coupler l’application avec une interface web

5. Apache Spark

Jour 1

Introduction à Apache Spark

  • Apache Spark
  • MapReduce VS Spark
  • Caractéristiques d’Apache Spark
  • Architecture d’Apache Spark
  • Anatomie d’une application Spark
  • Interaction avec Spark
  • Spark sur Hadoop
  • Composants de Spark

Atelier pratique

Installation de Spark

  • Préparation d’une VM Linux
  • Télécharger Apache Spark
  • Installation d’Apache Spark : redhat /CentOS
  • Installation d’Apache Spark : Windows
  • Installation d’Apache Spark : Mac OS
  • Installation d’Apache Spark : Ubuntu /Debian

Atelier pratique : Installation Spark

Jour 2

Resilient Distributed Datasets ( RDDs )

  • Introduction aux RDDs (Resilient Distributed Datasets)
  • Exemple d’un RDD
  • Caractéristiques des RDDs
  • Liaison avec Spark (Scala/Java/Python)
  • Création d’un RDD
  • Opérations RDD
  • Actions RDD
  • Transformation RDD

Atelier pratique

Spark streaming

  • Définition
  • Exemple Scala, Java et Python
  • Concepts de base
  • Initialisation de StreamingContext
  • Flux discrétisés (DStreams)

Atelier pratique

Jour 3

Spark SQL

  • Caractéristiques de Spark SQL
  • Architecture Spark SQL
  • Appréhender les abstractions de données de Spark
  • Exploiter la Spark Session
  • Créer un Data Frame
  • Manipuler le DataFrame
  • Comprendre les formats de stockage
  • Construire un jeu de données
  • Importer un fichier Avro
  • Joindre des DataFrames
  • Sauvegarder au format Parquet
  • Employer la syntaxe select
  • Utiliser un Dataset
  • Exécuter un programme avec spark-submit
  • Choisir une distribution Spark
  • Conclure sur Apache Spark

Atelier pratique

6. Apache Kafka

Jour 1

Introduction à Apache kafka

  • Présentation de Kafka
  • Intérêt d’Apache Kafka
  • Les API de Kafka
  • Terminologies de Kafka
  • Atelier pratique

Architecture d’Apache kafka

  • Architecture du cluster Kafka
  • Topic
  • Broker
  • Zookeeper
  • Producers
  • Consumers
  • Kafka WORKFLOW

Installation et configuration de Apache Kafka

  • Installation et configuration d’Apache Kafka
  • Installation de Java
  • Installation de Zookeeper
  • Installation de Kafka
  • Atelier pratique: Installation

Jour 2

Commande Line Interface (CLI)

  • Démarrez le serveur Kafka
  • Lister tous les sujets
  • Créer un topic
  • Décrire un topic
  • Publier des messages sur un topic
  • Consommer des messages
  • Modifier les sujets d’Apache Kafka
  • Atelier pratique: CLI

Développement Kafka avec Java

  • Introduction à la programmation Kafka
  • Kafka APIs
  • Création d’un projet Kafka
  • Java producer
  • Rappels des producers Java
  • Producer Java avec clés
  • Java consumer
  • Consumer Java au sein d’un groupe de consumers
  • Consumer Java avec threads
  • Le consumer Java recherche et attribue
  • Compatibilité de client bidirectionnelle
  • Atelier pratique: Développement Kafka

Kafka Stream

  • Introduction à Kafka Stream
  • Concepts de Kafka Stream
  • Architecture de Kafka Stream
  • Démo: Application wordcount avec kafka stream
  • Atelier pratique: KStream

7. Elastic Stack Elk

Jour 1

Introduction à la suite ELK (ELK Stack)

  • Aperçu sur la suite ELK
  • Autres outils en relation avec ELK
  • Rôle de Elastic Stack
  • Installation de la suite ELK
  • Installation de la suite ELK sur Windows
  • Installation de la suite ELK sur Docker

Eléments du Stack ELK

  • Elasticsearch: Le noyau
  • Kibana: L’outil utilisateur
  • Logstash: L’outil d’ingestion
  • Beats: Transfert de données
  • X-Pack: Le pack de fonctionnalités

Cas d’utilisation la suite ELK

  • Gestion des logs
  • Aperçu sur la gestion des logs
  • Analyse des métriques
  • Aperçu sur l’analyse des métriques
  • Recherche de Sites et d’applications
  • Analyse de sécurité
  • Aperçu sur l’analyse de sécurité
  • Monitoring des performances des applications

Jour 2

Chargement des données

  • Données de chargement en masse
  • Chargement d’échantillons de données
  • Définition des types de données

Interrogation des données

  • Requêtes simples
  • Requêtes au niveau du terme
  • Analyse et tokenisation

Analyse des données

  • Agrégations de base
  • Filtrer les agrégations
  • Percentiles et histogrammes

Présentation de vos Insights

  • Présentation et configuration de Kibana
  • Création de visualisations dans Kibana
  • Création de tableaux de bord dans Kibana

Dépannage du Stack

  • Quand les choses vont mal
  • Dépannage des ressources

Atelier cas pratique

  • Installation et configuration (Serveur ElasticSearch, Mettre en place un cluster , Les rôles des
    noeuds)

8. Talend Open Studio

Jour 1

Introduction aux ETLs

  • Présentation des systèmes décisionnels
  • Architecture d’un système décisionnel
  • Conception d’un système décisionnel
  • Datawarehouse Et Datamart
  • Modélisation dimensionnelle
  • Les ETL
  • Table de fait et table de dimension
  • Atelier pratique

Mise en place de l’environnement de travail

  • Installation JDK
  • Installation de base de données Mysql sous WAMP
  • Installation de base de données Postgres
  • Installation de la base de données Oracle
  • Installation de Talend Open Studio For Data Integration
  • Atelier pratique

Concepts de base de Talend

  • Création d’un projet TOS
  • Présentation de Talend Open Studio
  • Business Modèle
  • Création d’un job talend
  • Composants Talend
  • Famille de composants
  • Métadonnées dans Talend
  • Atelier pratique

Différents types de Liens et Contraintes

  • Triggers
  • Lien de capture d’erreur
  • Lien d’itération
  • Atelier pratique

Jour 2

Travailler avec des Bases de données Mysql, Postgres et Oracle dans Talend

  • Base de donnée Mysql
  1. Installation
  2. Commandes
  3. Paramétrage d’une connexion et chargement des données en base de données
  4. Extraction des données
  • Base de donnée Postgres
  1. Installation
  2. Commande
  3. Paramétrage d’une connexion et chargement des données en base de données
  4. Extraction des données
  • Base de donnée Oracle
  1. Installation
  2. Commandes
  3. Paramétrage d’une connexion et chargement des données en base de données
  4. Extraction des données
  • Atelier pratique

Contextes et Variables Globales

  • Introduction aux contextes
  • Création et utilisation des contextes
  • Chargement de contextes depuis un fichier
  • Atelier pratique

Transformation des données

  • Agrégation de données
  • Tri de données
  • Filtrage de données
  • Conversion de types de données
  • Atelier pratique

Mappage de données

  • Le composant tMap
  • Jointure entre plusieurs sources de données
  • Filtres sur les données
  • Gestion des rejets
  • Atelier pratique

Organisation des Jobs Talend

  • Travailler avec des Sous Job ou sous un flux
  • Transmission des paramètres de contexts aux sous job
  • Evaluer la performance de l’Exécution d’un flux
  • Atelier pratique

Service Web avec Talend

  • Récupération des fichiers de données depuis un serveur distant
  • Reporting et envoie de mail
  • Atelier pratique

9. Big Data & IOT

Jour 1

L’Internet des Objets

  • Introduction à l’IoT
  • Architecture Iot
  • Domaines d’applications
  • Big data et Iot
  • Solution Cloud pour l’Iot
  • Tours d’Horizon sur Azure

Atelier pratique

Mise en place d’IoT Hub

  • Découvrir Azure IoT Hub
  • Créer un Azure IoT Hub pour le portail Azure
  • Créer un device IoT pour le portail Azure
  • Installer l’extension IoT pour Azure CLI
  • Créer un device IoT pour Azure CLI

Atelier pratique

Communication bidirectionnelle d’IoT Hub

  • Comprendre la communication bidirectionnelle
  • Créer un device-to-cloud avec .NET Core
  • Créer un device-to-cloud avec Node.js
  • Utiliser device-to-cloud avec Azure CLI
  • Utiliser cloud-to-device avec .NET Core
  • Utiliser cloud-to-device avec CLI
  • Appréhender les notions avancées d’Azure IoT Hub

Atelier pratique

Jour 2

Traitement des données en temps réel avec Stream Analytics

  • Découvrir Azure Stream Analytics
  • Créer une tâche Azure Stream Analytics
  • Configurer la source de données IoT Hub
  • Préparer les données de test
  • Utiliser Azure Stream Analytics avec des requêtes simples
  • Utiliser Azure Stream Analytics avec des requêtes complexes

Atelier pratique

Stockage des données IoT

  • Aborder le stockage des données IoT
  • Ajouter un compte de stockage
  • Créer un point de terminaison
  • Stocker dans Blob Storage
  • Stocker dans Cosmos DB

Atelier pratique

section 6: Visualisation des données IoT

  • Utiliser des services de visualisation
  • Créer un tableau de bord en temps réel
  • Configurer un tableau de bord côté Power BI
  • Visualiser les données avec Azure Times Series

Atelier pratique

10. Gouvernance et Sécurité

Jour 1

Introduction à la Gouvernance des données

  • Rôle des données au 21e siècle
  • Définition et principes de base de la gouvernance des données
  • Gouvernance des données Vs Gestion des données
  • Avantages de la gouvernance des données
  • Gouvernance des données dans le cloud
  • Outils de gouvernance des données
  • Les étapes de la gouvernance des données

Atelier pratique

Déploiement de la gouvernance des données

  • À qui appartiennent les données et pourquoi est-ce important?
  • Rôles dans le domaine de la gouvernance des données
  • Conception du processus de gouvernance des données

Atelier pratique

Gestion d’un programme de gouvernance des données

  • Gestion et maintien de la gouvernance des données
  • Suivi et mesure de votre programme

Atelier pratique

11. Mise en place d’un Data Lake

Jour 1

Introduction aux données d’entreprise

  • Données d’entreprise
  • Importance de la qualité de la donnée
  • Données du Big data
  • Architectures Big Data

Atelier pratique

Introduction aux Data lake

  • Présentation du Data lake
  • Pertinence du Data lake dans une entreprise
  • Avantage du Data lake
  • Fonctionnement d’un Data Lake
  • Différence entre le Data Lake et de Data Warehouse
  • Défis du du Data lake
  • Approches pour créer un Data Lake
  • Conclusion

Atelier pratique

Architecture du Data Lake

  • Architecture du Data lake
  • Concepts clés du Data Lake
  • Étapes de maturité du Data Lake
  • Meilleures pratiques de l’architecture Data Lake

Atelier pratique

L’architecture Lambda basée sur Data Lake

  • Introduction
  • Couche d’ingestion de données
  • Speed layer – traitement des données en temps quasi réel
  • Couche de stockage de données – stocker toutes les données
  • Serving layer – livraison et exportation de données
  • Acquisition layer – Couche d’acquisition de données
  • Messaging Layer – Couche de livraison de données
  • Ingestion layer – Couche d’ingestion de données
  • Exploration de la couche Lambda
  • Magasins de données relationnelles

Atelier pratique

Écosystème Hadoop pour la mise en œuvre d’un Data lake

  • Introduction
  • Distributions Hadoop
  • Facteurs de sélection d’un stack Big Data pour les entreprises
  • Écosystème Hadoop pour un Data lake

Jour 2

Acquisition de données de données par lots avec Apache Sqoop

  • Introduction
  • Contexte dans Data Lake – Acquisition de données
  • Fonctionnement de Sqoop
  • Importation de données à l’aide de Sqoop
  • Exportation de données à l’aide de Sqoop
  • Connecteurs Sqoop

Atelier pratique

Acquisition de données de flux de données à l’aide d’Apache Flume

  • Introduction
  • Contexte dans Data Lake: acquisition de données
  • Initiation à la Stream Data (Flux de données)
  • Données Batch Vs données stream
  • Acquisition de données de flux – cartographie technologique
  • Fonctionnement de Flume
  • Sqoop Vs Flume

Atelier pratique

Couche de messagerie utilisant Apache Kafka

  • Introduction
  • Contexte dans Data Lake – couche de messagerie
  • Couche de messagerie
  • Couche de messagerie – cartographie technologique
  • Cycle de vie du flux de données

Atelier pratique

Traitement des données à l’aide d’Apache Flink

  • Introduction
  • Contexte dans un lac de données – couche d’ingestion de données
  • Couche d’ingestion de données
  • Data Ingestion Layer – cartographie technologique
  • Fonctionnement de Flink
  • Architecture Flink

Atelier pratique

Magasin de données à l’aide d’Apache Hadoop

  • Introduction
  • Contexte pour Data Lake – Stockage de données et lambda Batch Layer
  • Stockage de données et Lambda Batch Layer
  • Stockage de données et couche Lambda Batch – cartographie technologique
  • Fonctionnement de Hadoop
  • Architecture Hadoop

Atelier pratique

Magasin de données indexé à l’aide d’Elasticsearch

  • Introduction
  • Contexte dans Data Lake: stockage de données et lambda Speed layer
  • Data Storage et Lambda Speed Layer
  • Data Storage et Lambda Speed Layer: cartographie technologique
  • Définition d’Elasticsearch
  • Fonctionnement d’Elasticsearch
  • Principes de l’architecture de base d’Elasticsearch

Atelier pratique

Deux de ces modules au choix :

1. NoSQL: HBase

Jour 1

Introduction

  • Stockage NoSQL
  • Caractéristiques des bases NoSQL : CAP
  • Choix d’une base de données NoSQL
  • Bases de données orientées documents
  • Historique et Présentation de MongoDB
  • Cas d’utilisation de MongoDB
  • Structure des données : notions de documents, de collections de valeurs
  • Le format JSON
  • Stockage de JSON
  • JavaScript pour manipuler du JSON

Atelier pratique

Installation et configuration de MongoDB

  • Plateformes supportées
  • Installation de MongoDB sur Windows
  • Choix de la version
  • Téléchargement de MongoDB pour Windows
  • Exécution
  • Configuration
  • Lancement de Mongo DB
  • Connection à MongoDB
  • Installation de MongoDB sur Linux
  • Choix de la version
  • Téléchargement de MongoDB pour Windows
  • Exécution
  • Configuration
  • Lancement de Mongo DB
  • Connection à MongoDB

Atelier pratique

Jour 2

Prise en main de MongoDb

  • Utilisation de l’invite interactive
  • Commandes de manipulation de base de données
  • Utilisation d’un client graphique
  • Importation d’une collection
  • Manipulation du format BSON
  • Comprendre le type ObjectId

Atelier pratique

Administration de MongoDB

  • Sauvegarde des données
  • Configuration de la journalisation
  • Mise en place d’une réplication
  • Configuration de la réplication
  • Teste de la réplication
  • Mise en place du sharding
  • Configuration d’une collection pour le sharding

Atelier pratique

Manipulation des documents dans MongoDB

  • Insérer un document
  • Modifier et supprimer un document
  • Utiliser une transaction
  • Chercher des documents avec FIND()
  • Comparer FIND() et SELECT en SQL
  • Utiliser les opérateurs du FIND()
  • Indexer pour améliorer les performances

Atelier pratique

MongoDB avancé

  • Comprendre le framework d’agrégation
  • Découvrir les étapes de l’agrégation
  • Découvrir les opérateurs des Pipeline d’agrégation

Atelier pratique

2. NoSQL: MongoDB

Jour 1

Introduction

  • Stockage NoSQL
  • Caractéristiques des bases NoSQL : CAP
  • Choix d’une base de données NoSQL
  • Bases de données orientées documents
  • Historique et Présentation de MongoDB
  • Cas d’utilisation de MongoDB
  • Structure des données : notions de documents, de collections de valeurs
  • Le format JSON
  • Stockage de JSON
  • JavaScript pour manipuler du JSON

Atelier pratique

Installation et configuration de MongoDB

  • Plateformes supportées
  • Installation de MongoDB sur Windows
  • Choix de la version
  • Téléchargement de MongoDB pour Windows
  • Exécution
  • Configuration
  • Lancement de Mongo DB
  • Connection à MongoDB
  • Installation de MongoDB sur Linux
  • Choix de la version
  • Téléchargement de MongoDB pour Windows
  • Exécution
  • Configuration
  • Lancement de Mongo DB
  • Connection à MongoDB

Atelier pratique

Jour 2

Prise en main de MongoDb

  • Utilisation de l’invite interactive
  • Commandes de manipulation de base de données
  • Utilisation d’un client graphique
  • Importation d’une collection
  • Manipulation du format BSON
  • Comprendre le type ObjectId

Atelier pratique

Administration de MongoDB

  • Sauvegarde des données
  • Configuration de la journalisation
  • Mise en place d’une réplication
  • Configuration de la réplication
  • Teste de la réplication
  • Mise en place du sharding
  • Configuration d’une collection pour le sharding

Atelier pratique

Manipulation des documents dans MongoDB

  • Insérer un document
  • Modifier et supprimer un document
  • Utiliser une transaction
  • Chercher des documents avec FIND()
  • Comparer FIND() et SELECT en SQL
  • Utiliser les opérateurs du FIND()
  • Indexer pour améliorer les performances

Atelier pratique

MongoDB avancé

  • Comprendre le framework d’agrégation
  • Découvrir les étapes de l’agrégation
  • Découvrir les opérateurs des Pipeline d’agrégation

Atelier pratique

3. NoSQL : Cassandra

Jour 1

Introduction à Cassandra

  • Base de données NoSQL
  • Définition de Cassandra
  • Caractéristiques de Cassandra
  • Modèle de données Cassandra
  • Cassandra vs RDBMS
  • Cassandra vs Hadoop
  • Cassandra vs HBase
  • Cassandra vs MongoDB
  • Cassandra Cqlsh
  • Commandes Shell
  • Atelier pratique

Architecture de Cassandra

  • Composants de l’architecture de Cassandra
  • Composants de l’architecture de Cassandra
  • Cassandra Keyspace (Création, modification et suppression d’un Keyspace)
  • Réplication de données dans Cassandra
  • Atelier pratique

Installation et configuration de Cassandra

  • Installation et configuration de Cassandra sur Windows
  • Installation et configuration de cassandra sur Linux
  • Installation et configuration de cassandra avec Docker
  • Atelier pratique

Le langage CQL (Cassandra Query Language)

  • Modèle de données de Cassandra
  • API de Cassandra
  • Types de données CQL
  • Atelier pratique

Jour 2

Manipulation de tables avec Cassandra

  • Création de tables
  • Modification de tables
  • Suppression ds tables
  • Tronquer une table
  • Création d’un index
  • Suppression de l’Index
  • Lot (Batch)
  • Atelier pratique

Manipulation des données avec CQL

  • Création de données
  • Mise à jour des données
  • Lecture des données
  • Suppression de données
  • Définition des types de données complexes
  • Insertion des données dans des types complexes
  • Modification les types de données complexes
  • Atelier pratique

Les Clusters avec Cassandra

  • Les clusters
  • Démarrage d’un cluster avec Docker Compose
  • Surveillance de l’ajout des nœuds
  • Obtention d’informations avec nodetool
  • Maîtrise de la syntaxe de création de table
  • Définition d’une clé de partition et de clustering
  • Modélisation des données
  • Atelier pratique

Optionnels

Jour 2

Section 4. Web scraping – Niveau intermédiaire

  • Automatiser la navigation web
  • Interaction du base du navigateur
  • Gestion du glisser -déposer
  • Fonction d’attente du selenium
  • Fonction d’attente explicite de selenium
  • Web scraping avec Selenium
  • Exploration d’un document HTML avec Selenium
  • Comment isoler les données avec Selenium
  • Interagir avec la page web
  • Fonction d’attente du Selenium
  • Aller plus loin avec le web scraping
  • Pratique du web scraping avec Selenium
  • Mini-projet Web Scraping avec Selenium

Section 5. Automatisation de l’accès aux données Web avec l’API

  • Comprendre les requêtes API
  • Créer des requêtes d’API
  • Analyse via JSON
  • Utilisation des clés API
  • Lier les appels d’API
  • Prochaines étapes
  • Comprendre les requêtes API
  • Créer des requêtes d’API
  • Analyser le JSON
  • Utiliser des clés d’API
  • Lier les appels d’API
  • Application – Mini-Projet

Parcours de formation

1. Web Scraping avec Python

Jour 1

Section 1. Web scraping avec Python

  • Automatiser tout avec Python
  • Course prerequisites
  • Découvrir le web scraping
  • Les opportunités pour l’entreprise.
  • Quel outil faut-il utiliser ?
  • Web scraping avec Python
  • Préparation de l’environnement de travail

Section 2. Automatiser la gestion des fichiers et des dossiers

  • Comment lire les fichiers
  • Comment écrire des fichiers
  • Exécuter les commandes du terminal
  • Organiser les répertoires
  • Le répertoire de travail actuel
  • Chemins absolus et chemins relatifs
  • Créer de nouveaux dossiers
  • Le processus de lecture/écriture de fichiers
  • Copier, déplacer, renommer et supprimer des fichiers et des dossiers
  • Organiser les Dossiers

Section 3 : Web scraping – niveau de base

  • La valeur du web scrapping
  • Création et analyse d’une requête
  • Explorer la structure HTML
  • Comment isoler les données
  • Préparation au grattage paginé
  • Gratter le contenu paginé
  • Web scraping
  • Exploration d’un document HTML avec Beautiful Soup
  • Objets Tag et NavigableString
  • Aller plus loin avec le web scraping
  • Pratique du web scraping
  • Mini-projet Web Scraping avec BeautifulSoup

Jour 2

Section 1. Web scraping avec Python

  • Automatiser tout avec Python
  • Course prerequisites
  • Découvrir le web scraping
  • Les opportunités pour l’entreprise.
  • Quel outil faut-il utiliser ?
  • Web scraping avec Python
  • Préparation de l’environnement de travail

Section 2. Automatiser la gestion des fichiers et des dossiers

  • Comment lire les fichiers
  • Comment écrire des fichiers
  • Exécuter les commandes du terminal
  • Organiser les répertoires
  • Le répertoire de travail actuel
  • Chemins absolus et chemins relatifs
  • Créer de nouveaux dossiers
  • Le processus de lecture/écriture de fichiers
  • Copier, déplacer, renommer et supprimer des fichiers et des dossiers
  • Organiser les Dossiers

Section 3 : Web scraping – niveau de base

  • La valeur du web scrapping
  • Création et analyse d’une requête
  • Explorer la structure HTML
  • Comment isoler les données
  • Préparation au grattage paginé
  • Gratter le contenu paginé
  • Web scraping
  • Exploration d’un document HTML avec Beautiful Soup
  • Objets Tag et NavigableString
  • Aller plus loin avec le web scraping
  • Pratique du web scraping
  • Mini-projet Web Scraping avec BeautifulSoup

Jour 1

Section 1. Web scraping avec Python

  • Automatiser tout avec Python
  • Course prerequisites
  • Découvrir le web scraping
  • Les opportunités pour l’entreprise.
  • Quel outil faut-il utiliser ?
  • Web scraping avec Python
  • Préparation de l’environnement de travail

Section 2. Automatiser la gestion des fichiers et des dossiers

  • Comment lire les fichiers
  • Comment écrire des fichiers
  • Exécuter les commandes du terminal
  • Organiser les répertoires
  • Le répertoire de travail actuel
  • Chemins absolus et chemins relatifs
  • Créer de nouveaux dossiers
  • Le processus de lecture/écriture de fichiers
  • Copier, déplacer, renommer et supprimer des fichiers et des dossiers
  • Organiser les Dossiers

Section 3 : Web scraping – niveau de base

  • La valeur du web scrapping
  • Création et analyse d’une requête
  • Explorer la structure HTML
  • Comment isoler les données
  • Préparation au grattage paginé
  • Gratter le contenu paginé
  • Web scraping
  • Exploration d’un document HTML avec Beautiful Soup
  • Objets Tag et NavigableString
  • Aller plus loin avec le web scraping
  • Pratique du web scraping
  • Mini-projet Web Scraping avec BeautifulSoup

Jour 1

Section 1. Web scraping avec Python

  • Automatiser tout avec Python
  • Course prerequisites
  • Découvrir le web scraping
  • Les opportunités pour l’entreprise.
  • Quel outil faut-il utiliser ?
  • Web scraping avec Python
  • Préparation de l’environnement de travail

Section 2. Automatiser la gestion des fichiers et des dossiers

  • Comment lire les fichiers
  • Comment écrire des fichiers
  • Exécuter les commandes du terminal
  • Organiser les répertoires
  • Le répertoire de travail actuel
  • Chemins absolus et chemins relatifs
  • Créer de nouveaux dossiers
  • Le processus de lecture/écriture de fichiers
  • Copier, déplacer, renommer et supprimer des fichiers et des dossiers
  • Organiser les Dossiers

Section 3 : Web scraping – niveau de base

  • La valeur du web scrapping
  • Création et analyse d’une requête
  • Explorer la structure HTML
  • Comment isoler les données
  • Préparation au grattage paginé
  • Gratter le contenu paginé
  • Web scraping
  • Exploration d’un document HTML avec Beautiful Soup
  • Objets Tag et NavigableString
  • Aller plus loin avec le web scraping
  • Pratique du web scraping
  • Mini-projet Web Scraping avec BeautifulSoup

Jour 1

Section 1. Web scraping avec Python

  • Automatiser tout avec Python
  • Course prerequisites
  • Découvrir le web scraping
  • Les opportunités pour l’entreprise.
  • Quel outil faut-il utiliser ?
  • Web scraping avec Python
  • Préparation de l’environnement de travail

Section 2. Automatiser la gestion des fichiers et des dossiers

  • Comment lire les fichiers
  • Comment écrire des fichiers
  • Exécuter les commandes du terminal
  • Organiser les répertoires
  • Le répertoire de travail actuel
  • Chemins absolus et chemins relatifs
  • Créer de nouveaux dossiers
  • Le processus de lecture/écriture de fichiers
  • Copier, déplacer, renommer et supprimer des fichiers et des dossiers
  • Organiser les Dossiers

Section 3 : Web scraping – niveau de base

  • La valeur du web scrapping
  • Création et analyse d’une requête
  • Explorer la structure HTML
  • Comment isoler les données
  • Préparation au grattage paginé
  • Gratter le contenu paginé
  • Web scraping
  • Exploration d’un document HTML avec Beautiful Soup
  • Objets Tag et NavigableString
  • Aller plus loin avec le web scraping
  • Pratique du web scraping
  • Mini-projet Web Scraping avec BeautifulSoup

Jour 1

Section 1. Web scraping avec Python

  • Automatiser tout avec Python
  • Course prerequisites
  • Découvrir le web scraping
  • Les opportunités pour l’entreprise.
  • Quel outil faut-il utiliser ?
  • Web scraping avec Python
  • Préparation de l’environnement de travail

Section 2. Automatiser la gestion des fichiers et des dossiers

  • Comment lire les fichiers
  • Comment écrire des fichiers
  • Exécuter les commandes du terminal
  • Organiser les répertoires
  • Le répertoire de travail actuel
  • Chemins absolus et chemins relatifs
  • Créer de nouveaux dossiers
  • Le processus de lecture/écriture de fichiers
  • Copier, déplacer, renommer et supprimer des fichiers et des dossiers
  • Organiser les Dossiers

Section 3 : Web scraping – niveau de base

  • La valeur du web scrapping
  • Création et analyse d’une requête
  • Explorer la structure HTML
  • Comment isoler les données
  • Préparation au grattage paginé
  • Gratter le contenu paginé
  • Web scraping
  • Exploration d’un document HTML avec Beautiful Soup
  • Objets Tag et NavigableString
  • Aller plus loin avec le web scraping
  • Pratique du web scraping
  • Mini-projet Web Scraping avec BeautifulSoup

Jour 1

Section 1. Web scraping avec Python

  • Automatiser tout avec Python
  • Course prerequisites
  • Découvrir le web scraping
  • Les opportunités pour l’entreprise.
  • Quel outil faut-il utiliser ?
  • Web scraping avec Python
  • Préparation de l’environnement de travail

Section 2. Automatiser la gestion des fichiers et des dossiers

  • Comment lire les fichiers
  • Comment écrire des fichiers
  • Exécuter les commandes du terminal
  • Organiser les répertoires
  • Le répertoire de travail actuel
  • Chemins absolus et chemins relatifs
  • Créer de nouveaux dossiers
  • Le processus de lecture/écriture de fichiers
  • Copier, déplacer, renommer et supprimer des fichiers et des dossiers
  • Organiser les Dossiers

Section 3 : Web scraping – niveau de base

  • La valeur du web scrapping
  • Création et analyse d’une requête
  • Explorer la structure HTML
  • Comment isoler les données
  • Préparation au grattage paginé
  • Gratter le contenu paginé
  • Web scraping
  • Exploration d’un document HTML avec Beautiful Soup
  • Objets Tag et NavigableString
  • Aller plus loin avec le web scraping
  • Pratique du web scraping
  • Mini-projet Web Scraping avec BeautifulSoup

Jour 1

Section 1. Web scraping avec Python

  • Automatiser tout avec Python
  • Course prerequisites
  • Découvrir le web scraping
  • Les opportunités pour l’entreprise.
  • Quel outil faut-il utiliser ?
  • Web scraping avec Python
  • Préparation de l’environnement de travail

Section 2. Automatiser la gestion des fichiers et des dossiers

  • Comment lire les fichiers
  • Comment écrire des fichiers
  • Exécuter les commandes du terminal
  • Organiser les répertoires
  • Le répertoire de travail actuel
  • Chemins absolus et chemins relatifs
  • Créer de nouveaux dossiers
  • Le processus de lecture/écriture de fichiers
  • Copier, déplacer, renommer et supprimer des fichiers et des dossiers
  • Organiser les Dossiers

Section 3 : Web scraping – niveau de base

  • La valeur du web scrapping
  • Création et analyse d’une requête
  • Explorer la structure HTML
  • Comment isoler les données
  • Préparation au grattage paginé
  • Gratter le contenu paginé
  • Web scraping
  • Exploration d’un document HTML avec Beautiful Soup
  • Objets Tag et NavigableString
  • Aller plus loin avec le web scraping
  • Pratique du web scraping
  • Mini-projet Web Scraping avec BeautifulSoup

Jour 1

Section 1. Web scraping avec Python

  • Automatiser tout avec Python
  • Course prerequisites
  • Découvrir le web scraping
  • Les opportunités pour l’entreprise.
  • Quel outil faut-il utiliser ?
  • Web scraping avec Python
  • Préparation de l’environnement de travail

Section 2. Automatiser la gestion des fichiers et des dossiers

  • Comment lire les fichiers
  • Comment écrire des fichiers
  • Exécuter les commandes du terminal
  • Organiser les répertoires
  • Le répertoire de travail actuel
  • Chemins absolus et chemins relatifs
  • Créer de nouveaux dossiers
  • Le processus de lecture/écriture de fichiers
  • Copier, déplacer, renommer et supprimer des fichiers et des dossiers
  • Organiser les Dossiers

Section 3 : Web scraping – niveau de base

  • La valeur du web scrapping
  • Création et analyse d’une requête
  • Explorer la structure HTML
  • Comment isoler les données
  • Préparation au grattage paginé
  • Gratter le contenu paginé
  • Web scraping
  • Exploration d’un document HTML avec Beautiful Soup
  • Objets Tag et NavigableString
  • Aller plus loin avec le web scraping
  • Pratique du web scraping
  • Mini-projet Web Scraping avec BeautifulSoup

Jour 1

Section 1. Web scraping avec Python

  • Automatiser tout avec Python
  • Course prerequisites
  • Découvrir le web scraping
  • Les opportunités pour l’entreprise.
  • Quel outil faut-il utiliser ?
  • Web scraping avec Python
  • Préparation de l’environnement de travail

Section 2. Automatiser la gestion des fichiers et des dossiers

  • Comment lire les fichiers
  • Comment écrire des fichiers
  • Exécuter les commandes du terminal
  • Organiser les répertoires
  • Le répertoire de travail actuel
  • Chemins absolus et chemins relatifs
  • Créer de nouveaux dossiers
  • Le processus de lecture/écriture de fichiers
  • Copier, déplacer, renommer et supprimer des fichiers et des dossiers
  • Organiser les Dossiers

Section 3 : Web scraping – niveau de base

  • La valeur du web scrapping
  • Création et analyse d’une requête
  • Explorer la structure HTML
  • Comment isoler les données
  • Préparation au grattage paginé
  • Gratter le contenu paginé
  • Web scraping
  • Exploration d’un document HTML avec Beautiful Soup
  • Objets Tag et NavigableString
  • Aller plus loin avec le web scraping
  • Pratique du web scraping
  • Mini-projet Web Scraping avec BeautifulSoup

Jour 1

Section 1. Web scraping avec Python

  • Automatiser tout avec Python
  • Course prerequisites
  • Découvrir le web scraping
  • Les opportunités pour l’entreprise.
  • Quel outil faut-il utiliser ?
  • Web scraping avec Python
  • Préparation de l’environnement de travail

Section 2. Automatiser la gestion des fichiers et des dossiers

  • Comment lire les fichiers
  • Comment écrire des fichiers
  • Exécuter les commandes du terminal
  • Organiser les répertoires
  • Le répertoire de travail actuel
  • Chemins absolus et chemins relatifs
  • Créer de nouveaux dossiers
  • Le processus de lecture/écriture de fichiers
  • Copier, déplacer, renommer et supprimer des fichiers et des dossiers
  • Organiser les Dossiers

Section 3 : Web scraping – niveau de base

  • La valeur du web scrapping
  • Création et analyse d’une requête
  • Explorer la structure HTML
  • Comment isoler les données
  • Préparation au grattage paginé
  • Gratter le contenu paginé
  • Web scraping
  • Exploration d’un document HTML avec Beautiful Soup
  • Objets Tag et NavigableString
  • Aller plus loin avec le web scraping
  • Pratique du web scraping
  • Mini-projet Web Scraping avec BeautifulSoup

Jour 1

Section 1. Web scraping avec Python

  • Automatiser tout avec Python
  • Course prerequisites
  • Découvrir le web scraping
  • Les opportunités pour l’entreprise.
  • Quel outil faut-il utiliser ?
  • Web scraping avec Python
  • Préparation de l’environnement de travail

Section 2. Automatiser la gestion des fichiers et des dossiers

  • Comment lire les fichiers
  • Comment écrire des fichiers
  • Exécuter les commandes du terminal
  • Organiser les répertoires
  • Le répertoire de travail actuel
  • Chemins absolus et chemins relatifs
  • Créer de nouveaux dossiers
  • Le processus de lecture/écriture de fichiers
  • Copier, déplacer, renommer et supprimer des fichiers et des dossiers
  • Organiser les Dossiers

Section 3 : Web scraping – niveau de base

  • La valeur du web scrapping
  • Création et analyse d’une requête
  • Explorer la structure HTML
  • Comment isoler les données
  • Préparation au grattage paginé
  • Gratter le contenu paginé
  • Web scraping
  • Exploration d’un document HTML avec Beautiful Soup
  • Objets Tag et NavigableString
  • Aller plus loin avec le web scraping
  • Pratique du web scraping
  • Mini-projet Web Scraping avec BeautifulSoup

Jour 1

Section 1. Web scraping avec Python

  • Automatiser tout avec Python
  • Course prerequisites
  • Découvrir le web scraping
  • Les opportunités pour l’entreprise.
  • Quel outil faut-il utiliser ?
  • Web scraping avec Python
  • Préparation de l’environnement de travail

Section 2. Automatiser la gestion des fichiers et des dossiers

  • Comment lire les fichiers
  • Comment écrire des fichiers
  • Exécuter les commandes du terminal
  • Organiser les répertoires
  • Le répertoire de travail actuel
  • Chemins absolus et chemins relatifs
  • Créer de nouveaux dossiers
  • Le processus de lecture/écriture de fichiers
  • Copier, déplacer, renommer et supprimer des fichiers et des dossiers
  • Organiser les Dossiers

Section 3 : Web scraping – niveau de base

  • La valeur du web scrapping
  • Création et analyse d’une requête
  • Explorer la structure HTML
  • Comment isoler les données
  • Préparation au grattage paginé
  • Gratter le contenu paginé
  • Web scraping
  • Exploration d’un document HTML avec Beautiful Soup
  • Objets Tag et NavigableString
  • Aller plus loin avec le web scraping
  • Pratique du web scraping
  • Mini-projet Web Scraping avec BeautifulSoup

Jour 1

Section 1. Web scraping avec Python

  • Automatiser tout avec Python
  • Course prerequisites
  • Découvrir le web scraping
  • Les opportunités pour l’entreprise.
  • Quel outil faut-il utiliser ?
  • Web scraping avec Python
  • Préparation de l’environnement de travail

Section 2. Automatiser la gestion des fichiers et des dossiers

  • Comment lire les fichiers
  • Comment écrire des fichiers
  • Exécuter les commandes du terminal
  • Organiser les répertoires
  • Le répertoire de travail actuel
  • Chemins absolus et chemins relatifs
  • Créer de nouveaux dossiers
  • Le processus de lecture/écriture de fichiers
  • Copier, déplacer, renommer et supprimer des fichiers et des dossiers
  • Organiser les Dossiers

Section 3 : Web scraping – niveau de base

  • La valeur du web scrapping
  • Création et analyse d’une requête
  • Explorer la structure HTML
  • Comment isoler les données
  • Préparation au grattage paginé
  • Gratter le contenu paginé
  • Web scraping
  • Exploration d’un document HTML avec Beautiful Soup
  • Objets Tag et NavigableString
  • Aller plus loin avec le web scraping
  • Pratique du web scraping
  • Mini-projet Web Scraping avec BeautifulSoup

2. Web Scraping avec Python

Vous souhaitez vous inscrire ? en savoir plus ? poser une question ?

Nom
Ce champ n’est utilisé qu’à des fins de validation et devrait rester inchangé.